Table I. Asymmetric Oxidation of Prochiral Sulfides to Sulfoxides Using Camphorsulfonyloxaziridine 3 at $20^{\circ} \mathrm{C}$
$\mathbf{3 a - b}+\mathrm{R}-\mathrm{S}-\mathrm{R}^{\prime} \rightarrow \mathrm{R}-\mathrm{S}(\mathrm{O})-\mathrm{R}^{\prime}+(-)-4$ or $(-)-5$

entry	sulfoxide	solvent	$\%$ ee (configuration) [time (h)] \% yield ${ }^{a}$		$\begin{gathered} {[\alpha]^{20} \mathrm{D}} \\ \text { (in acetone) } \end{gathered}$	modified Sharpless ${ }^{b}$
			3a ($\mathrm{X}=\mathrm{H}$)	3b (X = Cl)		
1	p-Tol-S(O)-CH3 ${ }^{\text {c,d }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	28 (S) [1] 80	62 (S) [1] 60		$96(R)^{e}$
2		CCl_{4}	$26(S)$ [40] 22	$95(S)$ [4] 95	-139.0 (c 1.6)	
3	p-Tol-S $(\mathrm{O})-n-\mathrm{Bu}^{f . d}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11 (S) [1] 70	61 (S) [1] 90		$20(R)^{\text {b }}$
4		CCl_{4}	$8(S)[18] 90$	84 (S) [3] 90	-162.3 (c 3.2)	
5	$p-\mathrm{Tol}-\mathrm{S}(\mathrm{O})-i-\mathrm{Pr}{ }^{\text {f }}$ d	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$11(S)[1] 70$	$54(S)$ [1] 95		$63(R)^{\text {b }}$
6		CCl_{4}	$8(S)$ [18] 90	66 (S) [6] 95	-119.0 (c 3.0)	
7		CCl_{4}	23 (S) [40] 23	$92(S)$ [18] 90	-131.6 (c 1.1)	$95(R)^{g}$
8	$\mathrm{SSO}_{\mathrm{O}}^{\mathrm{CH}} \mathrm{H}_{3}^{\mathrm{f}, \mathrm{~d}}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$64(S)$ [1] 70	$95(S)$ [1] 90	-138.8 (c 1.2)	$86(R)^{\text {g }}$
9		CCl_{4}	73 (S) [1] 80	$95(S)$ [48] 60		
10	$\mathrm{Ph}-\mathrm{S}(\mathrm{O})-\mathrm{CH}=\mathrm{CH}_{2}{ }^{\text {d }}$	CCl_{4}	21 (S) [40] 25	$85(S)$ [48] 60	$-262.4\left(\begin{array}{c}\text { c 1 } 1.7) \\ \end{array}\right.$	
11	$\mathrm{Ph}-\mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}{ }^{\text {c,d }}$	CCl_{4}	23 (S) [40] 18	$94(S)$ [48] 65	$-170.0\left(\begin{array}{c}\text { c 1 } 1.5\end{array}\right)^{h}$	$64(R)^{g}$
12	$\mathrm{Ph}-\mathrm{S}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}{ }^{\text {c,d }}$	CCl_{4}	no reaction	$84(S)$ [48] 52	-183.2 (c 1.1)	$60(R)^{g}$
13	$\mathrm{Ph}-\mathrm{S}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{CN}^{d}$	CCl_{4}	no reaction	>95 (S) [48] 45	-170.1 ($\left.c^{1} 1.0\right)$	$34(R)^{\text {g }}$
14	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{S}(\mathrm{O}) \mathrm{CH}_{3}{ }^{\text {c,d }}$	CCl_{4}	$66(S)$ [12] 85	$94(S)$ [18] 84	$+7.1(c 1.0)^{i}$	$53(R)^{\text {b }}$

${ }^{a}$ Isolated yields. ${ }^{b}$ Oxidations at $-20^{\circ} \mathrm{C}$ for $4-22 \mathrm{~h}$. See ref $6 .{ }^{c}$ Ee's determined using Eu(hfc) ${ }_{3}$. ${ }^{d}$ Determined by comparison of the rotation to literature values. ${ }^{e}$ Reference $6 \mathrm{e} .{ }^{f}$ The sulfoxide enantiomers were separated on a Regis Pirkle covalent phenylglycine HPLC column eluting with 95:5 hexane/isopropyl alcohol. The S-sulfoxides were the first to be eluted. See ref 4. ${ }^{g}$ Reference 6 b . ${ }^{h}$ In ethanol. ${ }^{i}$ In CHCl_{3}.
sulfonyloxaziridines are ideal reagents for the synthesis and study of optically active selenoxides because oxidations can be carried out under anhydrous conditions in the absence of acid. ${ }^{18}$ Indeed oxidation of $\mathbf{6}$ by $(-)-\mathbf{3 b}$ in CDCl_{3} at $20^{\circ} \mathrm{C}$ affords $(-)-(S)-7$ in 73% ee (95% yield). ${ }^{20}$ Oxidation at $-60^{\circ} \mathrm{C}$ improves the ee to 83%. Interestingly oxidation of $\mathbf{6}$ by $\mathbf{3 b}$ is faster than methyl p-totyl sulfide ($<5 \min$ vs 4 h), and higher ee's were observed in CDCl_{3} compared to CCl_{4}.

The stereoselectivities for asymmetric oxidations using enantiomerically pure N-sulfonyloxaziridines can be predicted by using steric arguments. ${ }^{7}$ However, the uniformly high ee's for a variety of sulfide substrates suggest that factors other than steric are important. The fact that solvent influences the stereoselectivities for asymmetric oxidations with $\mathbf{3 b}$ having polar Cl groups but not for 3a strongly suggests that electronic or polar elements influence the stereoselectivity. Consistent with this observation are the faster rates of oxidation for $\mathbf{3 b}$ compared to 3 a, despite the fact that the active site in the former is more hindered.

Enantiomerically pure α, α-dichlorocamphorsulfonyloxaziridine (3b) is the most effective and generally asymmetric oxidizing reagent developed to date for the asymmetric oxidation of sulfides (selenides) to sulfoxides (selenoxides). Since the configuration of the oxaziridine three-membered ring controls the stereochemistry, both sulfoxide enantiomers are readily available simply by choice of the appropriate oxaziridine. Asymmetric oxidations using $(-)-\mathbf{3 b}$ is now in many cases a viable alternative to the Andersen

[^0]procedure for the synthesis of enantiomerically pure sulfoxides in both enantiomeric forms.

Acknowledgment. The financial support of the National Science Foundation and the National Institutes of Health (Institute of General Medical Sciences) through Grant GM 34014 are gratefully acknowledged.

Supplementary Material Available: Spectroscopic data and physical constants (yield, mp, IR, and ${ }^{1} \mathrm{H}$ NMR) for 3a, 3b, 4, and 5 (1 page). Ordering information is given on any current masthead page.

The Mode of Triple Phosphoryl Group Transfer in Pyruvate Phosphate Dikinase Catalysis. Demonstration of the Intermediacy of Pyrophosphorylated and Phosphorylated Enzyme Species

Lawrence J. Carroll, Andrew F. Mehl, and Debra Dunaway-Mariano*

Department of Chemistry and Biochemistry University of Maryland
College Park, Maryland 20742
Received March 30, 1989

Pyruvate phosphate dikinase (PPDK) ${ }^{1}$ catalyzes the reversible phosphorylation of pyruvate and orthophosphate utilizing the β and γ-phosphates of a single molecule of ATP. ${ }^{2}$ In C_{4} plants where PEP serves as the primary acceptor in CO_{2} fixation, PPDK

[^1]

Figure 1. Time course for a single turnover of PEP in the active site of $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated PPDK at $25^{\circ} \mathrm{C}$. (A) The reaction mixture contained $1 \mu \mathrm{M}\left[{ }^{32} \mathrm{P}\right.$] PEP, $10 \mu \mathrm{M}$ PPDK active sites (S.A, $\sim 15 \mu \mathrm{~mol} / \mathrm{min}$ mg), $5 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}$, and $50 \mathrm{mM} \mathrm{K}{ }^{+}$Hepes (pH 7.0). (B) The reaction mixed contained $5 \mu \mathrm{M}\left[{ }^{32} \mathrm{P}\right]$ PEP, $16 \mu \mathrm{M}$ of PPDK active sites (S. A. $\sim 15 \mu \mathrm{~mol} / \mathrm{min} \mathrm{mg}$), $5 \mathrm{mM} \mathrm{MgCl} 2,20 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}, 20 \mu \mathrm{M}$ AMP, and $100 \mu \mathrm{M} \mathrm{PP}$: $(\bullet) \mathrm{EP}$, (O) PEP, and ($\stackrel{)}{ }$ ATP.

Scheme I

potentiates photosynthesis under the control of a light/darkmediated regulatory mechanism. ${ }^{3}$

During PPDK catalysis the $\beta-\mathrm{P}$ of the ATP is transfered to pyruvate to form PEP, while the $\gamma-\mathrm{P}$ is transfered to P_{i}, The stereochemistry of the β - P transfer by the bacterial enzyme was shown to be retention, signifying two direct displacements at the β-phosphorus, while the γ - P transfer was shown to occur by a single displacement leading to inversion of configuration. ${ }^{4}$ Thus, the PPDK-catalyzed interconversion of ATP and PEP consists of three phosphoryl transfer steps. The kinetic mechanism, bi(ATP, P_{i})bi(AMP, PP_{i})uni(pyruvate) uni(PEP), suggests that the first two of the phosphoryl transfer steps are coupled and that they lead to a phosphoryl enzyme which in a third, independent step transfers its phosphoryl group to pyruvate. ${ }^{5}$ The phosphoryl

[^2]

Figure 2. Time course for a single turnover of ATP, P_{i}, and pyruvate in the active site of $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}^{+}$-activated PPDK at $25^{\circ} \mathrm{C}$. The reaction mixture contained $6 \mu \mathrm{M}\left[\gamma-{ }^{32} \mathrm{P}\right]$ ATP or $\left[\beta-{ }^{32} \mathrm{P}\right]$ ATP, $16 \mu \mathrm{M}$ PPDK active sites ($\mathrm{S} . \mathrm{A} . \sim 15 \mu \mathrm{~mol} / \mathrm{min} \mathrm{mg}$), $2.5 \mathrm{mM} \mathrm{MgCl}, 10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}$, $2 \mathrm{mM} \mathrm{P}_{\mathrm{i}}$, and 1 mM pyruvate, and $50 \mathrm{mM} \mathrm{K}{ }^{+}$Hepes (pH 7.0): (\times) EPP, ($)$ EP, (O) ATP, ($) \mathrm{PP}_{\mathrm{i}}$, and (Δ) PEP.
enzyme has been isolated from an equilibrium mixture formed from PPDK plus PEP and characterized as the N^{3}-phosphohistidine adduct. ${ }^{6}$

Upon the basis of these observations we have proposed ${ }^{5}$ that the PPDK-catalyzed reaction follows one of the two mechanisms shown in Scheme I. According to mechanism I ATP phosphorylates P_{i} and generates ADP as an intermediate. The ADP then phosphorylates the enzyme which in turn phosphorylates pyruvate. Mechanism II, on the other hand, involves nucleophilic displacement at the $\beta-\mathrm{P}$ of ATP which has been observed for only a few ATP utilizing enzymes ${ }^{7}$ and which leads to an unprecedented pyrophosphoryl enzyme intermediate. ${ }^{8}$ The pyrophosphoryl enzyme intermediate then undergoes displacement of its terminal phosphoryl group by \mathbf{P}_{i} to form EP and free PP_{i}. In this communication we report the results of rapid quench kinetic experiments that allow us to unambiguously identify mechanism II as that followed during PPDK catalysis.
The time course for a single turnover in the PPDK active site was measured by reacting radiolabeled substrate ($\left[{ }^{32} \mathrm{P}\right]$ PEP, $\left[{ }^{14} \mathrm{C}\right]$ ATP, $\left[\gamma{ }^{-32} \mathrm{P}\right]$ ATP, or $\left[\beta^{-32} \mathrm{P}\right]$ ATP $)^{9}(40 \mu \mathrm{~L})$ with excess
(5) Wang, H.-C.; Ciskanik, L.; Dunaway-Mariano, D.; von der Saal, W.; Villafranca, J. J. Biochemistry 1988, 27, 625.
(6) Spronk, A. M.; Yoshida, H.; Wood, H. G. P.N.A.S. 1976, 73, 4415.
(7) Walsh, C. Enzymatic Reaction Mechanisms; W. H. Freeman and Company: 1979; p 259.
(8) The formation of a pyrophosphoryl enzyme intermediate was first proposed by Cooper and Kornberg (Cooper, R. A.; Kornberg, H. L. Biochim. Biophys. Acta 1967, 141, 211 and by Berman et al. (Berman, K. N.; Itada, N.; Cohn, M. Biochim. Biophys. Acta 1967, 141, 214) for the related phosphoenol pyruvate synthase reaction. Later, Evans and Wood (Evans, H. J.; Wood, H. G. Fed. Proc. Fed. Amer. Soc. Biol. Chem. 1968, 27.588) proposed pyrophosphoryl PPDK as an intermediate in the PPDK-catalyzed reaction of ATP, Pi , and pyruvate.
(9) $\left[{ }^{14} \mathrm{C}\right]$ ATP and $\left[\gamma-{ }^{32} \mathrm{P}\right]$ ATP were purchased from Amersham. Before use each nucleotide was purified on a $1-\mathrm{mL}$ DEAE Sephadex column by using a linear gradient of $\mathrm{NH}_{4} \mathrm{HCO}_{3}(0.1 \rightarrow 0.6 \mathrm{M})$ as eluant. [β - ${ }^{32} \mathrm{P}$]ATP was prepared by combining 1 mCi of $\left[\gamma{ }^{-32} \mathrm{P}\right]$ ATP with $1 \mu \mathrm{~mol}$ AMP, $50 \mu \mathrm{~mol}$ ATP, 1 unit of adenylate kinase, and $1 \mu \mathrm{~mol} \mathrm{MgCl}_{2}$ in $140 \mu \mathrm{~L}$ of 50 mM K Hepes (pH 8). The solution was incubated at $35^{\circ} \mathrm{C}$ for 45 min and then applied to a $1.5 \times 20 \mathrm{~cm}$ DEAE cellulose column. The column was eluted with I L of triethylamine bicarbonate $(0.05 \mathrm{M} \rightarrow 0.4 \mathrm{M}, \mathrm{pH} 7.6)$ at $4^{\circ} \mathrm{C}$. The fractions containing [$\beta-{ }^{32} \mathrm{P}$]ADP were combined and concentrated with a rotary evaporator. Excess triethylamine bicarbonate was removed by repeated evaporations of small aliquots of water. The resulting [β - ${ }^{32}$ P] ADP was dissolved in 1 mL of 100 mM Tris buffer (pH 7.5) containing 10 mM MgCl . To this solution were added $10 \mu \mathrm{~L}$ of 100 mM acetylphosphate and 0.5 units of acetate kinase. The reaction solution was incubated at $25^{\circ} \mathrm{C}$ for 1 h and then applied to a $2 \cdot \mathrm{~mL}$ column of DEAE Sephadex equilibrated with 0.1 M $\mathrm{NH}_{4} \mathrm{HCO}_{3}$. The column was eluted with a step gradient ${ }^{11}$ of 20 mL of 0.1 $\mathrm{M} \mathrm{NH} 4_{4} \mathrm{HCO}_{3}, 10 \mathrm{~mL}$ of $0.23 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$, and 6 mL of $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$. The ATP-containing fractions (from the $1 \mathrm{M} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ wash) were combined and lyophilized. [$\left.{ }^{32} \mathrm{P}\right]$ PEP was prepared by reacting the [$\left.\beta-{ }^{32} \mathrm{P}\right]$ ATP $(0.08 \mathrm{mM})$ with 2 mM pyruvate and $2 \mathrm{mM} P_{i}$ in the presence of 15 mM $\mathrm{MgCl}_{2}, 15 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}, 0.5$ units $/ \mathrm{mL}$ of PPDK, and $50 \mathrm{mM} \mathrm{K}{ }^{+}$Hepes buffer (pH 7.0) for $60 \mathrm{~min}\left(27^{\circ} \mathrm{C}\right.$). The reaction solution was chromatographed on a $1.5 \times 20 \mathrm{~cm}$ DEAE cellulose column with a 1 L linear gradient of triethylamine bicarbonate ($0.05 \rightarrow 0.4 \mathrm{M}, \mathrm{pH} 7.6$).

Figure 3. Time course for a single turnover of ATP, P_{i}, and pyruvate in the active site of $\mathrm{Co}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated PPDK at $25^{\circ} \mathrm{C}$, The reaction mixture contained $6 \mu \mathrm{M}\left[\gamma-{ }^{32} \mathrm{P}\right]$ ATP or $\left[\beta-{ }^{32} \mathrm{P}\right]$ ATP, $20 \mu \mathrm{M}$ PPDK active sites (S.A. $\sim 15 \mu \mathrm{~mol} / \mathrm{min} \mathrm{mg}$), $2.5 \mathrm{mM} \mathrm{CoCl}_{2}, 10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}$, $2 \mathrm{mM} \mathrm{P}_{\mathrm{i}}, 1 \mathrm{mM}$ pyruvate, and $50 \mathrm{mM} \mathrm{K}{ }^{+}$Hepes (pH 7.0): (${ }^{(\ominus)}$ EPP, (0) EP, (\star) ATP, (\diamond) PP ${ }_{\mathrm{i}}$, and (\uparrow) PEP.
enzyme ($40 \mu \mathrm{~L}$) in a rapid quench apparatus. ${ }^{10}$ The time courses for the reaction of $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}^{+}$activated PPDK with limiting [$\left.{ }^{32} \mathrm{P}\right]$ PEP in the absence and presence of the cosubstrates, AMP and PP_{i}, are depicted in Figure 1. Consistent with the uni(PEP)uni(pyruvate) portion of the PPDK kinetic mechanism ${ }^{5}$ we see that the phosphorylation of the enzyme by PEP occurs independent of PP_{i} and AMP. In a separate experiment (not shown) where the PEP was reacted with $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated PPDK in a ratio of 1:20, the internal equilibrium constant ($K_{\text {eq }}^{\text {cat }}=$ [EP-pyruvate]/[E-PEP]) was determined as 1.5 .

The time course for the forward direction of the PPDK reaction was measured by using [$\gamma{ }^{32} \mathrm{P}$]ATP to monitor EPP and PP_{i} formation and $\left[\beta \cdot{ }^{32} \mathrm{P}\right]$ ATP to monitor EPP + EP, PEP, and ADP formation. $\left[{ }^{14} \mathrm{C}\right]$ ATP was used to demonstrate that radiolabeled nucleotide did not coprecipitate with the enzyme during the CCl_{4} step of the reaction workup. The results obtained with the $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated enzyme are shown in Figure 2. Both EPP and $E P$ were formed as intermediates in the catalyzed reaction of ATP, P_{i}, and pyruvate, while ADP was not.

Because the level of EPP observed in the single turnover experiment was modest, conditions which would lead to enhanced accumulation of this intermediate were sought. In a separate study of PPDK catalysis the rate of isotope exchange from the $\mathrm{P}_{\beta}-\mathrm{O}-\mathrm{P}_{\alpha}$ to the $\mathrm{P}_{\alpha}=\mathrm{O}$ position and from the $\mathrm{P}_{\beta}=\mathrm{O}$ to $\mathrm{P}_{\gamma}-\mathrm{O}-\mathrm{P}_{\beta}$ position in $\left[\beta-{ }^{18} \mathrm{O}_{2}, \beta, \alpha^{-18} \mathrm{O}\right]$ ATP was examined as a possible indicator of the relative rates of $\mathrm{P}_{\beta}-\mathrm{O}-\mathrm{P}_{\alpha}$ and $\mathrm{P}_{\gamma}-\mathrm{O}-\mathrm{P}_{\beta}$ bond cleavage. ${ }^{12}$ The $\beta \rightarrow \beta, \gamma$ and $\beta, \alpha \rightarrow \alpha$ positional isotope exchange (PIX) rates were equivalent for the $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated enzyme, but, with the $\mathrm{Co}^{2+} / \mathrm{NH}_{4}{ }^{+}$activated enzyme, the $\beta, \alpha \rightarrow \alpha$ PIX occurred 2 -fold faster than the $\beta \rightarrow \beta, \gamma$ PIX, and, with the $\mathrm{Mn}^{2+} / \mathrm{NH}_{4}{ }^{+}$ enzyme, it was 30 -fold faster. These findings suggested that with the $\mathrm{Co}^{2+} / \mathrm{NH}_{4}{ }^{+}$- or $\mathrm{Mn}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated enzyme the rate of EPP formation ${ }^{13}$ may exceed the rate of its conversion to EP. Indeed, we found that the level of EPP which accumulates during a single turnover of ATP $(6 \mu \mathrm{M})$ in the active site $(18 \mu \mathrm{M})$ of the $\mathrm{Mn}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated enzyme (EPP $=3.8 \mu \mathrm{M}$) is greater than that observed with the $\mathrm{Co}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated enzyme (EPP $=1.7$ $\mu \mathrm{M}$) which in turn is greater than that observed with the $\mathrm{Mg}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated enzyme ($\mathrm{EPP}=0.3 \mu \mathrm{M}$).

The time course for ATP turnover in the active site of $\mathrm{Co}^{2+} / \mathrm{NH}_{4}{ }^{+}$-activated PPDK is shown in Figure 3. These data

[^3]clearly show that EPP is the first intermediate formed in this reaction. As the EPP is consumed the second intermediate, EP, and second product, PP_{i}, appear, and then after a short lag period the final product, PEP, appears. These observations demonstrate that the PPDK reaction proceeds by mechanism II of Scheme I and not by mechanism I.

Acknowledgment. This work was supported by a National Institutes of Health Grant GM-36260. We gratefully thank Kenneth Johnson for helpful discussions of this work and for use of his rapid quench apparatus in preliminary experiments.

Doublet-Quartet Intersystem Crossing of Flavin Radical in DNA Photolyase

Tadashi Okamura

> Laboratory of Physical Chemistry
> Tokyo Zokei University
> Hachioji. Tokyo 193, Japan

Aziz Sancar*

Department of Biochemistry, University of North Carolina Chapel Hill, North Carolina 27599

Paul F. Heelis

Research Division
North East Wales Institute Clwyd CH5 4BR, United Kingdom

Yoshinori Hirata and Noboru Mataga
Department of Chemistry, Faculty of Engineering Science, Osaka University Toyonaka. Osaka 560. Japan Received April 6, 1989

DNA photolyases repair UV (200-300 nm)-induced pyrimidine dimers in DNA in a light ($300-500 \mathrm{~nm}$)-dependent reaction. ${ }^{1}$ The enzyme isolated from Escherichia coli has two chromophores, a stable neutral flavo-semiquinone radical (5 -hydro-FAD, FADH ${ }^{0}$) ${ }^{2}$ and 5,10-methenyltetrahydrofolate. ${ }^{3}$ Nanosecond flash photolysis studies ${ }^{4,5}$ on the enzyme revealed a transient absorption band which decays with a rate constant of $0.8 \times 10^{6} \mathrm{~s}^{-1}$. This absorption was assigned to an excited state of FADH ${ }^{0}$, which decays by abstracting a hydrogen atom from a tryptophan residue ${ }^{6}$ of the apoenzyme. This means that the radical must have an excited state with an intrinsic lifetime more than $1 \mu \mathrm{~s}$. Even though this transient absorption was tentatively assigned to the lowest doublet state $\left(D_{1}\right)$ of the flavin radical ${ }^{5}$ we had reasons to believe that it may actually be the lowest quartet $\left(\mathrm{Q}_{1}\right)$ of $\mathrm{FADH}^{0} .{ }^{5}$ Since quartet states have not previously been identified in organic free radicals, we undertook a more detailed analysis of the excited states of the enzyme-bound FADH 0. In this study we have carried out picosecond laser photolysis on E. coli DNA photolyase in order to understand the dynamics of the photophysical processes in more detail. Our results indicate that the excited state species with 1 $\mu \mathrm{s}$ lifetime is the quartet of flavin radical.
E. coli DNA photolyase was prepared as described previously. ${ }^{7}$ Enzyme concentration was $1.4 \times 10^{-4} \mathrm{M}$ with respect to the flavin radical. The enzyme was in a buffer containing $5 \times 10^{-2} \mathrm{M}$ Tris $\mathrm{HCl}, \mathrm{pH} 7.5,5 \times 10^{-2} \mathrm{M} \mathrm{NaCl}, 10^{-3} \mathrm{M}$ EDTA, $10^{-2} \mathrm{M}$ dithiothreitol, and 50% glycerol.

[^4]
[^0]: (16) Davis, F. A.; Billmers, J. M.; Stringer, O. D. Tetrahedron Lett. 1983, 3191.
 (17) Davis, F. A.; Stringer, O. D.; McCauley, J. P., Jr. Tetrahedron 1985, 41, 4747.
 (18) The asymmetric oxidation 6 by 1a gave 7 in 9% ee. ${ }^{17}$ Low to moderate optical properties ($18-49 \% \mathrm{ee}$) for the asymmetric oxidation of functionalized selenides to selenoxides by a modified Sharpless reagent has been reported ${ }^{19}$
 (19) Teicco, M.; Tingoli, M.; Testaferri, L.; Bartoli, D. Telrahedron Lett. 1987, 3849.
 (20) The isolation and manipulation of optically active methyl phenyl selenoxide (7) is described in ref 17. The specific rotation for $(-)(S)-7,27 \%$ ee, is $[\alpha]_{\mathrm{D}}=-8.0^{\circ}\left(c 0.7, \mathrm{CDCl}_{3}\right)$ isolated in 50% yield.

[^1]: (1) Abbreviations used include the following: PPDK, pyruvate phosphate dikinase; ATP, adenosine 5^{\prime}-triphosphate; ADP, adenosine 5^{\prime}-diphosphate; AMP, adenosine 5'-monophosphate; PEP, phosphoenol pyruvate: P_{i}, orthophosphate; PP_{i}, pyrophosphate, K^{+}Hepes, potassium salt of N-(2 -hydroxyethyl) piperazine- $N^{\prime} \cdot 2$-ethanesulfonic acid; EPP, pyrophosphoryl PPDK; EP, phosphoryl PPDK.
 (2) Reeves, R. E. J. Biol. Chem. 1968, 243, 3202. Reeves, R. E.; Munzies, R. A.; Hsu, D. S. J. Biol. Chem. 1968, 243, S486. Evans, H. J.; Woods, H. G. P.N.A.S. 1961, 61, 1448. Benziman, M.; Palgi, A. J. Bacteriol. 1970, 104, 24. Hatch, M. D.; Slack, C. R. Biochem. J. 1968, 106, 141. Kluge, M.; Osmond, C. B. Naturuissenshaffen 1971, 58, 414.

[^2]: (3) Edwards, G. E.; Nakamoto, H.; Burnell, J. N.; Hatch, M. D. Annu. Rev. Plant Physical 1985, 36, 255. Sheen, J. Y.; Bogorad, L. J. Biol. Chem. 1987, 262, 11726. Hudspeth, R. L.; Glackin, C. A.; Bonner, Grula, J. W. P.N.A.S. 1986, 83, 2884. Hague, D. R.; Uhler, M.; Collins, P. D. Nucleic Acids Res. 1983, 14, 4853. Ashton, A. R.; Burnell, I. N.; Hatch, M. D. Arch. Biochem. Biophys. 1984, 230, 492. Ashton, A. R.; Hatch, M. D. Biochem. Biophys. Res. Commun. 1983, 115, 53.
 (4) Cook, A. G.; Knowles, J. R. Biochemistry 1985, 24, 51.

[^3]: (10) Reactions were quenched with $0.6 \mathrm{~N} \mathrm{HCl}(164 \mu \mathrm{~L})$; and the protein in the quenched sample was precipitated with $\mathrm{CCl}_{4}(100 \mu \mathrm{~L})$. The radiolabeled reactants and product(s) were separated by HPLC [Beckman Ultrasphere C 18 analytical column, $25 \mathrm{mM} \mathrm{K}{ }^{+} \mathrm{P}_{\mathrm{i}}, 2.5 \%$ triethylamine and 5% methanol (pH 6.5) isocratic elution]. The radioisotope content of the protein precipitate (dissolved in boiling $10 \mathrm{~N}_{2} \mathrm{SO}_{4}$) and the HPLC fractions ${ }^{5}$ was determined by using liquid scintillation techniques.
 (11) Schendel, P. F.; Wells, R. D. J. Biol. Chem. 1973, 248, 8319.
 (12) Pocalyko, D.; Mehl, A.; Dunaway-Mariano, D., unpublished.
 (13) The uncertainty of the conclusion is due to the possibility that tortional equilibration at the $\alpha \cdot \mathrm{P}$ limits the $\mathrm{P}_{\beta}-\mathrm{O}-\mathrm{P}_{\alpha} \rightarrow \mathrm{P}_{\alpha}=\mathrm{O}$ PIX rate.

[^4]: (1) Sancar, A.; Sancar, G. B. Annu. Rev. Biochem. 1988, 57, 29.
 (2) Jorns, M. S.; Sancar, G. B.; Sancar, A. Biochemistry 1984, 23, 2673.
 (3) Johnson, J. L.; Hamm-Alvarez, S.; Payne, G.; Sancar, G. B.; Rajagopalan, K. V.; Sancar, A. Proc. Natl. Acad. Sci. U.S.A. 1988, 85, 2046-2050.
 (4) Heelis, P. F.: Sancar, A. Biochemistry 1986, 25, 8163.
 (5) Heelis, P. F.; Payne, G.; Sancar, A. Biochemistry 1987, 26, 4634.
 (6) Heelis, P. F.; Sancar, A.; Okamura, T., manuscript in preparation.
 (7) Sancar, A.; Sancar, G. B. J. Mol. Biol. 1984, 172, 223.

